SuperGen UK Centre for Marine Energy Research
Annual Assembly 2015

Modelling of Marine Energy Converter Arrays

D. Forehand – University of Edinburgh
Wave-to-Wire Modelling of Arrays of WECs - Updates

- Included a vector-controlled induction generator in the model – no longer a fixed speed generator.
- Allows speed/torque control of the generator (more flexibility), independent of the hydraulic power take-off unit.
Wave-to-Wire Modelling of Arrays of WECs - Updates

Optimal generator speed (pu)

Percentage improvement in average power output from optimal resistive control to variable speed generation
Power quality aspect of arrays of WECs

- W2W model of array of 6 WECs with Doubly Fed Induction Generators used to study voltage fluctuations introduced by the array in electricity networks.
- Effects of DFIG inertia on the smoothing in the net power produced analysed.
Optimising Network Design Options for Marine Energy Converter (MEC) Farms

- Techno-economic analysis framework to assess transmission options for MEC farms.
 - Technical feasibility –
 - Supply quality constraints.
 - Optimal sizing of reactive power compensation.
 - Economic factors –
 - Component and installation costs.
 - Costs associated with electrical losses.
Optimising Network Design Options for Marine Energy Converter (MEC) Farms

- Techno-economic analysis framework to assess transmission options for MEC farms.
 - Technical feasibility –
 - Supply quality constraints.
 - Optimal sizing of reactive power compensation.
 - Economic factors –
 - Component and installation costs.
 - Costs associated with electrical losses.

<table>
<thead>
<tr>
<th>Distance from the shore (km)</th>
<th>33 kV</th>
<th>132 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.27</td>
<td>0.44</td>
</tr>
<tr>
<td>15</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>20</td>
<td>2.28</td>
<td>0.60</td>
</tr>
<tr>
<td>25</td>
<td>2.81</td>
<td>0.75</td>
</tr>
<tr>
<td>30</td>
<td>3.37</td>
<td>0.98</td>
</tr>
<tr>
<td>35</td>
<td>3.98</td>
<td>1.29</td>
</tr>
<tr>
<td>40</td>
<td>4.64</td>
<td>1.70</td>
</tr>
<tr>
<td>45</td>
<td>5.36</td>
<td>2.22</td>
</tr>
<tr>
<td>50</td>
<td>6.16</td>
<td>2.88</td>
</tr>
</tbody>
</table>

Percentage energy lost over a year
Optimising Network Design Options for Marine Energy Converter (MEC) Farms

- Techno-economic analysis framework to assess transmission options for MEC farms.

- Technical feasibility –
 - Supply quality constraints.
 - Optimal sizing of reactive power compensation.

- Economic factors –
 - Component and installation costs.
 - Costs associated with electrical losses.

33 kV

<table>
<thead>
<tr>
<th>Farm size (MW)</th>
<th>Distance from the shore (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.06 1.08 1.20 1.25 1.37 1.68 1.79 2.10 2.19</td>
</tr>
<tr>
<td>15</td>
<td>1.14 1.16 1.30 1.38 1.55 1.67 1.95 2.11 2.58 2.67</td>
</tr>
<tr>
<td>20</td>
<td>1.22 1.24 1.41 1.51 1.72 1.88 2.21 2.43 3.05 3.14</td>
</tr>
<tr>
<td>25</td>
<td>1.30 1.32 1.51 1.64 1.89 2.08 2.48 2.75 3.52 3.62</td>
</tr>
<tr>
<td>30</td>
<td>1.38 1.40 1.61 1.77 2.07 2.29 2.74 3.08 4.00 4.09</td>
</tr>
<tr>
<td>35</td>
<td>1.46 1.50 1.72 1.90 2.24 2.49 3.01 3.40 4.47 4.56</td>
</tr>
<tr>
<td>40</td>
<td>1.54 1.59 1.82 2.03 2.42 2.70 3.28 3.72 4.94 5.04</td>
</tr>
<tr>
<td>45</td>
<td>1.61 1.68 1.94 2.16 2.59 2.90 3.54 4.04 5.42 5.51</td>
</tr>
<tr>
<td>50</td>
<td>1.69 1.76 2.06 2.29 2.77 3.11 3.81 4.36 5.89 5.98</td>
</tr>
</tbody>
</table>

132 kV

<table>
<thead>
<tr>
<th>Farm size (MW)</th>
<th>Distance from the shore (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.38 1.44 1.50 1.59 1.69 1.69 1.75 1.81 1.87 2.06</td>
</tr>
<tr>
<td>15</td>
<td>1.59 1.65 1.71 1.80 1.89 1.89 1.96 2.02 2.08 2.34</td>
</tr>
<tr>
<td>20</td>
<td>1.80 1.86 1.92 2.01 2.10 2.10 2.17 2.23 2.29 2.61</td>
</tr>
<tr>
<td>25</td>
<td>2.00 2.07 2.13 2.22 2.31 2.31 2.37 2.44 2.50 2.89</td>
</tr>
<tr>
<td>30</td>
<td>2.21 2.28 2.34 2.43 2.52 2.52 2.58 2.65 2.71 3.16</td>
</tr>
<tr>
<td>35</td>
<td>2.42 2.48 2.55 2.64 2.73 2.73 2.79 2.85 2.92 3.44</td>
</tr>
<tr>
<td>40</td>
<td>2.63 2.69 2.76 2.85 2.94 2.94 3.00 3.06 3.13 3.71</td>
</tr>
<tr>
<td>45</td>
<td>2.84 2.90 2.96 3.06 3.15 3.15 3.21 3.27 3.33 3.99</td>
</tr>
<tr>
<td>50</td>
<td>3.05 3.11 3.17 3.27 3.36 3.36 3.42 3.48 3.54 4.26</td>
</tr>
</tbody>
</table>

Relative cost of the transmission network (base case 1MW farm, 10 km from the shore, using a 11kV network)
The PolyWEC Project - Update

- Wave energy converters with Dielectric Elastomer Generators (DEG) PTOs (termed PolyWECs).
- Working principle of Dielectric Elastomer Generators:
First Generation PolyWECs

Existing WEC concepts – replace PTOs with DEGs

PolyBuoy

PolyOWC

PolySurge
Second Generation PolyWECs

Direct interaction between fluid and DEG.

Closed Membrane WEC

Open Membrane WEC

Submerged Pressure Differential WEC
Optimised PolyOWC

Improved:
• Impedance matching (OWC and DEG dynamics);
• OWC collector hydrodynamics;
• Energy harvesting controller.

DEG:
- \(R = 125 \text{ mm} \)
- \(\lambda_p = 4 \)
- \(t = 93 \mu\text{m} \)

Max. harv. power: 0.67W (\(H=4.5\text{cm} \) \(f=0.7\text{Hz} \))

Energy density: 109 J/kg (w-t-w efficiency: 20%)

Eq. full-scale sys. power: 270kW (\(H=1.8\text{m} \) \(T=9\text{s} \))

DEG:
- VHB elastomer
- CG electrodes
- Harvesting cycle at constant charge with in-parallel external capacitor ([Shian et al., Adv. Mater. 26, 6617-6621, 2014])

Diagram:
- Scale: 1/40
- Wires and connections
- Control PC
- Relays Driver
- Parallel capacitor
Non-Optimised Floating PolyOWC

Scale: 1/50

DEG:
- $R = 95$ mm
- $\lambda_p = 3.66$
- $t = 74$ μm

Max. harv. power: 0.25W ($H=10$cm $f=0.5$Hz)
Energy density: 106J/kg (w-t-w efficiency: 10%)
Eq. full-scale sys. power: 220kW ($H=5$m $T=12.6$s)

DEG:
- VHB elastomer with CG electrodes;
- Pressurized air-chamber;
- Harvesting cycle with parallel capacitor.

[results in the process of publication]
System performed well also in:
• Polychromatic waves;
• Extreme loading conditions.

Next: design and test of a 1/35 scale prototype! study of Poly-OWC arrays!
[results in the process of publication]

Polychromatic sea
$H_s = 10 \text{ cm} \ T_e = 1.82 \text{ s}$
Modelling 2nd Generation PolyWECs

- **Modelling:** Combined hydro-elastic-electrical modelling.
- **Example:** Vertical frame on seabed with Dielectric Elastomer (DE) membrane stretched across it:

 - Above figure shows “panelling” of membrane for numerical modelling (in WAMIT).
 - Time-dependent deformation of membrane obtained by superposition of multiple modes (i.e. multiple degrees of freedom):
Modelling 2nd Generation PolyWECs

- A frequency-domain simulation:

Currently performing time-domain simulations.
Water to Wire Modelling of Tidal Turbine Arrays

Experimental investigation of hydrodynamic and electromechanical interactions between turbines and the electrical network for a three machine array
Water to Wire Modelling of Tidal Turbine Arrays

- Turbine models are 1.2m in diameter and based on a proven design developed during the X-med project.
- The controller for the power take-off system and the electricity network will be simulated using the OPAL-RT OP5600 real time simulator.
- Test to be carried out at FloWave.
Thank You &
Any Questions?